Es gibt Probleme, die sind so komplex, dass das Ausprogrammieren ihrer Lösung entweder viel zu teuer oder momentan unmöglich wäre. Ziel von Maschinellem Lernen (ML) als Disziplin der Künstlichen Intelligenz (KI) ist es, solche Probleme zu bewältigen, indem Systeme in erster Linie nicht programmiert, sondern trainiert werden. Deep Learning (DL) als Teilgebiet des ML verwendet sog. tiefe neuronale Netze.
Neu ist dieser Ansatz nicht. Neu ist hingegen der Erfolg, den heutzutage die schier grenzenlose Masse an verfügbaren Daten und die unbändige Rechenleistung möglich machen. Mit TensorFlow und Keras bietet sich jetzt die Möglichkeit, diese hoch komplexen Netze mit wenig Aufwand zu definieren.
Technische Anforderungen:
* Bringen Sie einen eigenen Laptop mit, der über mindestens 2 GB freien Festplattenspeicher (für Installation und Testdaten) verfügt.
* Alle weiteren Informationen werden demnächst auf der folgenden Seite veröffentlicht: https://github.com/wittfabian/dl-workshop
Falls Sie ein Gerät Ihrer Firma verwenden, überprüfen Sie vorher bitte, ob eines der folgenden, gelegentlich vorkommenden Probleme bei Ihnen auftreten könnte.
* Workshop-Teilnehmer hat keine Administrator-Rechte.
* Corporate Laptops mit übermäßig penibler Sicherheitssoftware
* Gesetzte Corporate-Proxies, über die man in der Firma kommunizieren muss, die aber in einer anderen Umgebung entsprechend nicht erreicht werden.
Agenda:
ab 8.40: Registrierung und Begrüßungskaffee
9.40: Beginn
11.00 - 11.15: Kaffeepause
13.00 - 14.00: Mittagspause
16.00 - 16.30: Kaffeepause
ca. 18.30 Uhr: Ende
Die Themenbereiche sind ebenfalls unter https://github.com/wittfabian/dl-workshop einzusehen.
Skills
Teilnehmer sollten grundlegende Programmierkenntnisse in Python besitzen und ein Notebook mitbringen. Wir empfehlen als IDE die PyCharm Community Edition (http://bit.ly/1Sqq9Gi).
Lernziele
* Vermitteln der Grundkenntnisse von KI, ML und DL
* Einrichtung der Entwicklungsumgebung
* Erläuterung der API von TensorFlow und Keras
* Umsetzen von MNIST, der HelloWorld-Anwendung des ML
* Unterstützung beim Ausprobieren weiterer Domänen
Referent
Fabian Witt@witt_fabian
hat seinen Master in Data & Knowledge Engineering an der Otto-von-Guericke-Universität Magdeburg gemacht. In dieser Zeit hat er sich speziell mit Themen wie Maschinellem Lernen, Data Mining und Schwarmintelligenz befasst. Bei der Firma Redheads Ltd. ist er als Technical Lead für den Bereich Data Science verantwortlich.